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Abstract: Time-varying covariates are often available in survival studies, and estimation of the hazard
function needs to be updated as new information becomes available. In this article, we investigate several
different easy-to-implement ways that random forests can be used for dynamic estimation of the survival or
hazard function from discrete-time survival data. Results from a simulation study indicate that all methods
can perform well, and that none dominates the others. In general, situations that are more difficult from an
estimation point of view (such as weaker signals and less data) favour a global fit, pooling over all time
points, while situations that are easier from an estimation point of view (such as stronger signals and more
data) favour local fits. The Canadian Journal of Statistics 00: 000-000; 2021 © 2021 Statistical Society of
Canada

Résumé: Dans une analyse de survie, il arrive fréquemment que des variables explicatives dont la valeur
changent dans le temps soient disponibles. Lorsque c’est le cas, les estimations doivent étre mise a jour au
fur et 2 mesure que de nouvelles informations s’ajoutent. Dans cet article, nous étudions plusieurs manieres,
qui peuvent étre mises en ceuvre facilement, d’utiliser les foréts aléatoires pour obtenir des estimations de
la fonction de risque de fagcon dynamique avec des données de survie a temps discret. Les résultats d’une
simulation montrent que toutes les méthodes étudiées performent bien, et qu’aucune ne domine les autres.
En général, les situations qui sont plus difficiles du point de vue de I’estimation (un signal plus faible et
une taille d’échantillon plus petite) favorisent un modele global qui regroupe tous les points temporels,
tandis que celles plus faciles (un signal plus fort une taille d’échantillon plus grande) favorisent les modeles
locaux. La revue canadienne de statistique 00: 000-000; 2021 © 2021 Société statistique du Canada

1. INTRODUCTION

Survival analysis studies with time-to-event data have applications in many research areas. It is
common in practice that the actual time until the occurrence of an event of interest is observed for
only some of the subjects and partial information about the time is available for other subjects,
for example, because the study ended before all subjects experienced the event, or because some
of them were lost during the study. This concept is known as censoring (Klein & Moeschberger,
2003). Right-censoring, i.e., when only a lower bound on the actual time is observed, is the most
common situation and will be the main focus of this article. A comprehensive introduction to
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modelling time-to-event data can be found in Kleinbaum & Klein (2005) and Hosmer, Lemeshow
& May (2011).

Many of the traditional methods for analyzing continuous time-to-event data rely on some
parametric (e.g., Weibull) or semiparametric (e.g., Cox) assumptions about the link between
the covariates and the time response, which may result in poor performance in real-world
applications. Recently, more flexible models and adapted machine learning algorithms that use
data to find relevant structures, instead of imposing them a priori, have been developed in the
survival analysis domain (Wang, Li & Reddy, 2019). One class of such models is tree-based
methods, which are the focus of this article.

Tree-based methods were first developed for a categorical or continuous outcome. Breiman
et al. (1984) is the earliest monograph about trees and details the classification and regression
tree (CART) paradigm. Gordon & Olshen (1985) extended the tree paradigm to survival data
and introduced survival trees (Segal, 1988; Leblanc & Crowley, 1993). However, it is well
known that ensembles of trees often provide better estimation performance than a single tree.
One popular and efficient ensemble method is the random forest, introduced by Breiman (2001)
and extended to model right-censored survival data (Ishwaran et al., 2004, 2008; Hothorn et al.,
2006; Zhu & Kosorok, 2012). There is a vast literature on survival trees and forests. Bou-Hamad,
Larocque & Ben-Ameur (2011b) present a general overview.

In many studies, an estimate of the hazard function for a subject is obtained at time O using
only the baseline covariate information. However, when time-varying covariates are present, it is
often preferable to update the estimates of hazard probabilities as new longitudinal information
becomes available. This is the topic of “dynamic estimation,” an area of growing interest. There
are primarily three approaches to building dynamic estimates in this context: (1) landmark
analysis, (2) joint modelling and (3) a counting process approach. The idea of landmark analysis
(Anderson, Cain & Gelber, 1983; Madsen, Hougaard & Gilpin, 1983) is to build models, usually
Cox, at different landmark times ¢ using the covariate information available up to ¢ from those
subjects who are still at risk of experiencing the event at . Comprehensive treatments of this
approach are given in van Houwelingen (2007) and van Houwelingen & Putter (2011). The
second approach uses joint modelling of the time-varying covariate processes and the event
time data process (Henderson, Diggle & Dobson, 2000). This approach depends on the correct
specification of the model for the time-varying covariate trajectories, and this problem amplifies
as the number of time-varying covariates increases. The main idea of the third approach is to
partition the follow-up information for each individual into multiple segments on nonoverlapping
intervals (Bacchetti & Segal, 1995). This is used to accommodate time-varying covariates in the
tree-building process (Bertolet, Brooks & Bittner, 2016; Fu & Simonoff, 2017b). Survival forest
algorithms based on this same counting process approach can then be developed to provide
dynamic estimation of hazards or survival probabilities (Wongvibulsin, Wu & Zeger, 2020; Yao
et al., 2020).

Most of the research, including the work cited above, assumes that the time to event is
measured continuously when, in fact, it is measured on a discrete scale in many cases. This
can happen with binned data where the event occurs in an interval of time and the intervals
are not necessarily of the same length. For example, the Framingham Heart Study' requires
the participants to return to the study approximately every 2—6 years in order for their medical
history data to be collected and physical exams and laboratory tests done. Another example of
binned data is term insurance, or any other annual contract with churn (lack of renewal of the
contract) being the event of interest. Alternatively, the observed time may come from a truly
discrete process, such as the number of elapsed time units or trials before reaching a specific

Uhttps://www.nhlbi.nih.gov/science/framingham-heart-study-fhs.
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goal (e.g., the number of cycles until pregnancy). Although traditional modelling approaches
for continuous-time survival data can also be applied to discrete-time survival data, Tutz &
Schmid (2016) explain the advantages of using statistical methods that are specifically designed
for discrete event times. They point out that the hazard functions derived in the discrete case
are more easily interpretable than those for continuous survival time data, since the hazards
can be formulated as conditional probabilities. Moreover, discrete models do not have any
problems dealing with ties. Therefore, in this article we focus on methods specifically designed
for discrete-time survival data.

Survival trees and forests designed specifically for discrete-time responses were developed
by Bou-Hamad et al. (2009), Bou-Hamad, Larocque & Ben-Ameur (2011a), Schmid et al. (2016,
2020) and Berger et al. (2019). Section 2.1 provides a description of some of these methods since
they are central to this article. Elgmati et al. (2015) propose a penalized Aalen additive model for
dynamic estimation of the hazard function for discrete-time recurrent event data, but their method
is limited to one-step-ahead estimation while we also explore multistep-ahead estimation.

From the above discussion, we see that no tree-based methods have addressed the problem of
dynamic estimation with discrete survival responses. In this article, we investigate different ways
that random forests can be used for dynamic estimation of hazard function with discrete-time
survival response data.

The rest of the article is organized as follows. Section 2 describes the data setting and the
proposed methods. The results from a simulation study are presented in Section 3. Section 4
provides conclusions and directions for future work. More details about the simulation study and
a real example using bankruptcy data can be found in the Supplementary Material.

2. DESCRIPTION OF THE METHODS

Suppose we have data on N independent subjects. For subject i, observations are in the form of
(t;, 6;,x;) where 7; € {1,2, ..., T} is the discrete time to event; T is the maximum observed time
in the dataset; 6; is the censoring index, which takes a value of 0 if the observation for the subject
i is right-censored and a value of 1 if subject i has experienced the event of interest; and x; is a
set of covariates, some of which can be time-varying and some time-invariant. We will denote
by x;;(#) the value of the kth covariate, k € {1,2,...,p}, attimet € {0,1,...,7 — 1} for subject
i. Hence, x;(0) gives the baseline covariate values. For simplicity, we will use this notation for
all covariates, time-varying or not. Hence x;(f) remains constant for all # for a time-invariant
covariate. The values of the actual time to event and the censoring times for subject i are denoted
by U; and V;,, respectively. Hence we have 7; = min(U;,, V;), and we assume that U; and V; are
independent given x;. The hazard function for subject i is denoted by h;(t) = P(U; =t | U; > 1)
for simplicity, but it is obvious that 7;, 6;, U; and V, depend on x;. Similarly, the survival
function for subject i is S;(¥) = P(U; > t), and the probability that the event occurs at time ¢
is m;(t) = P(U; = t). These two functions can be obtained from the hazard function with the
recursive formulae S;(¢) = S;(t — 1)(1 — h;(t)) and 7;(t) = S;(t — 1) — S;(¢), with S;(0) = 1. Hence,
it is sufficient to model the hazard function (or any one of the other two functions) to recover the
other ones.

2.1. Description of Existing Methods for Discrete-Time Survival Data

The existing methods for dynamic estimation based on time-varying covariate data use a counting
process approach to reformat the data. To fix ideas, a generic dataset of 10 observations with
two covariates, X; being time-varying and X, being time-invariant, is given in Table 1. For
instance, the first subject experienced the event at the second time point and thus values of the
time-varying covariate X, (f) are available only up to = 1, with NA’s for the other time points.
Note that we do not assume that the covariate values at the event or censoring time are available
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TABLE 1: A generic dataset with 10 observations and two covariates, with X, being time-varying and X,
time-invariant.

id T ) X,(0) X, (1) X,(2) X,(3) X,4) X,
1 2 1 x,,(0) X, (1) NA NA NA Xy
2 4 1 X1,(0) Xp,(1) x1,(2) X1,(3) NA Xy
3 3 0 x13(0) x13(1) x13(2) NA NA X3
4 1 0 x,14(0) NA NA NA NA X4
5 4 1 x,5(0) x5(1) x15(2) x,5(3) NA X5
6 4 0 X,6(0) X16(1) X16(2) X16(3) NA Xy
7 2 0 x,17(0) x17(1) NA NA NA Xyg
8 4 1 x,53(0) x5(1) x13(2) x,5(3) NA Xog
9 3 1 X14(0) X9(1) X19(2) NA NA Xy

10 4 0 X,10(0) xp50(1) X10(2) x1103) NA X210

(e.g., the event or censoring may occur before the observation of the covariates). This process
is repeated for each of the subjects in the dataset. The reformatted dataset is often called the
“person—period” dataset.

We describe first the existing approaches for estimating the hazard of a subject at the
uth discrete time point that use the last available values of the time-varying covariates. One
widely used method is the discrete-time proportional odds (DTPO) model, also known as the
continuation ratio model

hi(u)

+ﬁ]Xli(u_ 1)+“'+ﬂpoi(u_ 1)’ (1)

fori=1,2,...,nandu =1,2,...,T, where the D,;(u)’s are indicator variables indexing the rth
discrete time point, which are defined by D,;(u) = 1 if r = u and O otherwise. The intercept
parameters ay, @,, ..., ap define the baseline hazard at each time point, and the f coefficients
describe the effects of covariates on the baseline hazard function. Applying the counting process
approach to reformat the generic dataset gives the person—period data in Table 2. The model
parameters in (1) can then be estimated by fitting a logistic regression to the reformatted dataset.
More detail can be found in Willett & Singer (1993), p. 171.

Bou-Hamad, Larocque & Ben-Ameur (2011a) were the first to propose building trees and
forests using the person—period dataset with y as the response and a likelihood-based splitting
criterion. Schmid et al. (2016) proposed a classification tree by applying the CART algorithm
based on the Gini impurity measure (Breiman et al., 1984) to the same dataset, again with y as
the response. Schmid et al. (2020) proposed building discrete-time random survival forests using
Hellinger’s distance criterion (Cieslak et al., 2012) as the splitting rule. This criterion was also
implemented in a classification tree approach for the modelling of competing risks in discrete time
(Berger et al., 2019). Numerical results given in Schmid et al. (2020) suggest that node-splitting
by Hellinger’s distance improves the performance when compared to skew-sensitive split criteria
such as the Gini impurity. This is consistent with the results of simulations performed here, and
therefore we investigate forest methods using only Hellinger’s distance criterion. The time point
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TABLE 2: Person—period dataset using the counting process approach for DTPO model. Only the first two

subjects (up to id = 2) are shown to save space. It has one row of observation for each discrete time point u

in which the subject is at risk of experiencing the event and the response y equals 1 if the event occurred at
that time and O otherwise.

id y u D, D, D, D, X, X,
1 0 1 1 0 0 0 x;1(0) Xy
1 1 2 0 1 0 0 x; (1) Xy
2 0 1 1 0 0 0 x1,(0) Xy,
2 0 2 0 0 0 x,(1) Xy
2 0 3 0 0 1 0 x1,(2) Xy
2 1 4 0 0 0 1 x1,(3) Xy

TaBLE 3: The 10 different estimating problems when 7" = 4. For instance, at time point t = 2, given a
subject who has survived up to this time point, we are interested in estimating its hazard function at the
future time points u = 3,4.

t u

Value 1 2 3 4
0 v v v v
1 v v v
2 v v
3 v

u itself is also included as an ordinal covariate (Schmid et al., 2016; Berger et al., 2019; Schmid
et al., 2020). To fix ideas, with the dataset in Table 2, this means building a classification forest
with y as the response using the three covariates X;, X,, and the time point u. Using the time
point as a predictor implies that the subjects can be split apart in the person—period data even if
no time-varying covariates are present among the original covariates, since the time point itself
is a time-varying covariate. In a terminal node, the estimate of the hazard is the proportion of 1
(events) in the node.

22. Description of the Set-up for Dynamic Estimation

In line with the purpose of dynamic estimation, where we want to estimate future risks, at the
current time point ¢ the goal is to estimate the hazard of a subject at some future time point
uforu=t+1,t+2,...,T. We assume that measurements for all covariates are available at
0,1,2,...,t, and the methods are entitled to use all of that information. Hence, all covariate
information up to time ¢ can be used to estimate the hazard function at u. Table 3 illustrates the
possible combinations of ¢ and u with 7 = 4 as an example. One can also see that, for a given
value of 7, the total number of possible estimation problems is 7(7 + 1)/2 (= 10 when T = 4).
For the following discussion, ¢ always denotes the current time point, u always denotes the future
time point we are interested in for estimation, and u > ¢ by definition.

DOI: 10.1002/cjs. 11639 The Canadian Journal of Statistics / La revue canadienne de statistique
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For simplicity of the presentation, we will use only the last available value of the time-varying
covariates to build the models. However, without loss of generality, we can assume that any past
information we also want to use is already incorporated into the covariates at the current time
point 7. For example, if we want to use the lag of a time-varying covariate, say X,(z — 1), we can
simply define a new covariate at time # to represent this lag, that is, X, () = X, (t — 1).

We investigate different methods to solve the hazard function estimation problem for each
pair (f,u) as illustrated in Table 3. These methods can be divided into three main approaches to
address the same estimation problem based on how they make use of the information provided
in the generic dataset, i.e., how they construct the training datasets.

Given the estimation problem for a specific pair (¢*, u*), the first approach is to use only
corresponding local information to train the model. More precisely, to construct the training
dataset to estimate the hazard for the given pair (+*, u*), we consider only the subjects that are still
alive and not censored at time point ™ — 1, as these subjects are still at risk of experiencing the
event at time point u*. Moreover, the training dataset contains only their covariate information
at the current time point ¢*. For a subject with covariate information available up to time *,
this approach builds separate models to estimate the hazard function at each future time point.
Using separate models might be effective if the hazards at different time points are related
to different covariate patterns, but this approach will likely lose efficiency when the hazards
are related to similar covariate patterns because of the variability induced by using separate
models.

The second approach solves the estimation problems for all future time points at once, from
a given time point 7*. In this case, for a given ¢*, we construct a single training dataset that pools
the local information (#*, u) from all possible values of u. This can reduce the variability when
the hazards at a given time point are related to similar covariate patterns. All the covariates are
used, and the future time point u itself is also considered as a covariate. The model trained with
this dataset is then used to estimate all future hazards for any subject, with its current covariate
information at the given time #*. The Schmid et al. (2020) method presented in the last section
builds the forest based on this idea.

The third approach is inspired by the so-called “supermodel” based on stacked data used
in landmark analysis, presented by van Houwelingen (2007) and van Houwelingen & Putter
(2011). Instead of pooling the information from the different estimation horizons only for a
given t*, as in the second approach, we can go a step further and pool all the information for
all combinations of (¢, u) together. The idea is to borrow information from different values of
t, in addition to that of different estimation horizons for a given ¢*. This results in a super
person—period training dataset which is created by stacking the training datasets from all values
of # used in the Schmid et al. (2020) method described above. The model trained on this super
person—period dataset is then used to estimate hazard probabilities for a subject at any future
time points with covariate information available at any current time point. This time, both
the estimation horizon u and the value of ¢ are potential covariates, in addition to the other
covariates.

Table 4 provides an illustration of the training dataset used for all three approaches to solve
each of the 10 estimation problems given in Table 3. The person—period dataset is reformatted
based on the generic dataset given in Table 1. Each subject has one row for each pair value of
(t,u) where it was still at risk of experiencing the event, i.e., neither its event time nor censoring
time has yet occurred at u — 1. Only the first three subjects (up to id = 3) are shown in the table
to save space. For example, to solve the estimation problem for the pair (t*, u*) = (1, 2), i.e., to
estimate the hazard probability for any subject at time point 2 with its covariate information at
time point 1, the training dataset used for the separate method would be the one given in rows
10—12 in Table 4. Note that only the subjects whose event time and censoring time have not
yet occurred at u* — 1 = 1 are included. The outcome y has a value of 1 if the event occurred
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TaBLE 4: Training dataset used for the three approaches to solve each of the estimation problems given in
Table 3 (T = 4): (i) the first approach— Separate; (ii) the second approach—the Schmid et al. (2020)
method (iii) the third approach—super person—period. Only the first three subjects (up to id = 3) are

shown to save space.

Box of data used to train a given Method (Covariates used)
Available covariates
to estimate hazards for which value of (¢, u).

Separate ‘ Schmid et al. (2020) ‘ Super person-period

| | | |
| | | |
row id oy, X1 X2 wu ‘(XX) (Xr. Xo. 1) ‘ (X1, Xa,u, 1) ‘
1, X2 1, X2,u 1, X2,u,t
1 0] en® am 10 | | |
‘ 2 2 0 ‘ z12(0) x22 1 0 ‘ (0,1) ‘ ‘ ‘
3 3 0fan® @ 1 0] | | |
‘ 4 1 1 ‘ z11(0) x21 2 0 ‘ ‘ ‘ ‘
‘ 5 2 0 ‘ 212(0) x22 2 0 ‘ (0,2) ‘ (0w u=1..4 ‘ ‘
6 30 } r13(0) w23 2 0 } ‘ All possible
7 2 0| 212(00 22 3 0
‘ 8 30 ‘ 213(0) 23 3 0 ‘ (0,3) ‘ ‘ combinations of ‘
‘ 9 2 0 ‘ z12(0) x22 4 O ‘ (0,4) ‘ ‘ (t,u): t < u, ‘
10 1 1| en@ am 2 1] | \ |
‘ 1 2 0 ‘ z12(1) w2 2 1 ‘ (1,2) ‘ ‘ h ‘
‘ 23 0 ‘ zi3(1) w2 21 ‘ ‘ ((Lu):u=2,...,4} ‘ e bt ‘
(13 2 0 an®) @» 3 1] | | |
‘ 14 30 ‘ z13(1) x23 3 1 ‘ 9 ‘ ‘ ‘
‘ 15 2 0 ‘ z12(1) x22 4 1 ‘ (1,4) ‘ ‘ ‘
‘ 16 2 0 \ 212(2) w2 32 ‘ (2,3) ‘ {(2,u) :u=34} ‘ ‘
(173 0 en@ am 3 2| | |
‘ 18 2 0 ‘ 212(2) w22 4 2 ‘ (2,4) ‘ ‘ ‘
‘ 9 2 0 ‘ 212(3) 22 4 3 ‘ (3,4) ‘ (3,4) ‘ ‘

at time point #* = 2, and 0 otherwise. Two covariates are used for this method, X; and X,. For
the same problem, the Schmid et al. (2020) method uses the training dataset as given in rows
10—15 in Table 4 and adds u as a covariate. The third approach uses X, X,, # and ¢ as covariates.
Its training dataset consists of all rows of the person—period data. One can see that to produce
10 estimated hazard probabilities, one for each estimation problem as given in Table 3, the first
approach builds 10 models (one for each pair of (7, u)), the second approach builds 4 models (one
for each ¢), and the third approach builds only 1 model (one for all pairs (%, u)).

DOI: 10.1002/cjs. 11639 The Canadian Journal of Statistics / La revue canadienne de statistique
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F1GURE 1: Graphical overview of the methods for dynamic estimation.

In the simulations summarized in the next section, we investigate these three approaches
applied to random forest methods: separate forests, forests using the Schmid et al. (2020) method,
and a forest built on the super person—period dataset, which will be referred to as “Separate,”
“Poolt” and “Superpp,” respectively.

We also compare the performance of these three methods to the following two methods in
the simulation study:

(1) Super person—period forest with baseline information only. That is, Superpp using only the
covariate information at ¢ = 0. This method will be referred to as “Superpp0.”

(2) DTPO model using the super person—period construction. This method will be referred to
as “SuperppDTPO.”

Note that SuperppDTPO targets the log-linear survival relationship. SuperppO is a nonpara-
metric method but never updates the information from the initial status. These two methods
serve as benchmark parametric and nonparametric methods, respectively, as we investigate the
performance of the three methods under different model set-ups.

Figure 1 provides a graphical overview of the methods for dynamic estimation. Consider
the set of time points {0, 1, ..., T}. Each entry (i, j) contains the subjects that are still alive and
not censored at time j — 1, and it gives the information available at time i from each subject in
that cell. Suppose we are at the current time point ¢ and want to estimate the hazard function
for some future time point u(> t). The red box (solid line) contains all the subject information
that Separate uses for training the forest model, the green box (dashed line) contains all that
Poolt uses, and the blue triangular region (dotted line) contains all that Superpp uses. Note
that SuperppDTPO uses the same subject information as Superpp, and Superpp0 also uses the
same subjects but with all (i, j) replaced by (0, j), indicating it uses the baseline information
only. There is in total one blue region, T green boxes and 7 X (T + 1)/2 red boxes, implying
that the construction of one Superpp forest, one SuperppO forest, one SuperppDTPO model, T
Poolt forests and 7' X (T + 1)/2 Separate forests are used to construct estimates of hazards for
all combinations of (¢, u) for a given value of 7. Note that Table 4 is a specific example of this
construction where there are only three subjects and T = 4.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11639
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3. SIMULATION STUDY

R (R Core Team, 2020) was used to perform the simulations. The package ranger (Wright,
Wager & Probst, 2020) was used to build the forests with the Hellinger splitting rule for the
methods Separate, Poolt, Superpp and Superpp0, that is, all methods that require a classification
forest. The number of trees in all forests is 500. SuperppDTPO was implemented using logistic
regression on the Superpp dataset.

3.1. Simulation Design

The data generating process (DGP) is a discretized version of the continuous-time survival data
generated from the model used in the simulation study in Yao et al. (2020). We consider the
following factors for different variations of DGPs:

(1) Different combinations of numbers of time-invariant and time-varying covariates in the true
generating model (Scenario).

(2) Different matrices to generate covariates’ values with autocorrelation for the time-varying
variables (labelled as “Strong” and “Weak’). Note that stronger autocorrelation would imply
that covariate values from earlier time points would tend to be more similar to those in later
time points, making future estimation easier.

(3) Different signal-to-noise ratios (SNRs) labelled as “High” and “Low,” constructed by
choosing different coefficients in the model.

(4) Different survival distributions: Exponential, Weibull and Gompertz.

(5) Different survival relationships between the hazards and covariates: a log-linear one, a
log-nonlinear one and a log-interaction model.

(6) Different censoring rates: 10% and 50%.

(7) Different training sample sizes: n = 200, 1000 and 5000.

(8) Different total numbers of time points: 7 = 4 and 8.

Each model is fitted with a training sample of size 1000. The performance of the fitted models
is then evaluated with 7 independent test sets of size 1000 each. The kth test set (k = 1,2,...,T)
includes only the subjects that are still at risk at u = k, so it can be used when (¢, u) = (j, k) for all
Jj=0,1,...,k— 1. Each simulation is repeated 500 times. See Section S1.1 in the Supplementary
Material for more details of the simulation design.

3.2. Simulation Results

We consider three criteria for evaluating the accuracy of the methods: absolute difference
(ADIST), absolute log odds ratio (ALOR) and concordance index (C-index) for hazard rates. Let
h and h be the estimated and the true hazards. ADIST is defined by

ADIST(h,h) = |h - hl,
and ALOR by
ALOR(h,h) = |In((h(1 — ))/((1 — byh))|.

Both ADIST and ALOR take a minimum value of O when & = 4, while ALOR also takes the
magnitude of /4 and /4 into account. The C-index computes the proportion of concordant pairs
over all possible evaluation pairs:

_ Xizj Whi > hy) -2k > 1))
Tz Wi > y)
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where the indices i and j refer to pairs of hazards in the test sample for a given combination of
(t,u). Itis designed to estimate the concordance probability P (le- >h, | h;>h ; ), which compares

the rankings of two independent pairs of hazard rates h;, h; and estimates hy, h ;. Concordance

probability evaluates whether the values of &, are directly associated with the values of 4,. Note
that while both ADIST and ALOR measure the distance between the true hazard and its estimate,
the C-index is a rank-based metric that evaluates whether the true and estimated values are
ordered similarly; a high value does not necessarily imply that the estimated values are close to
the true ones.

Extensive simulation studies show that the total number of time points 7 in the true model
does not affect the general conclusions. In the following discussion, we focus on the cases where
T =4 (see Table S1.2 in the Supplementary Material for performance comparison between
T=4and T =8).

Boxplots for the 500 simulation runs of each method for each combination (z,u) based
on the evaluation of ADIST and C-index are provided in Section S1.2 in the Supplementary
Material. Boxplot results from ALOR are not reported since the conclusions are essentially
the same as those from ADIST (ALOR results for performance comparison are still provided
in summary tables in Section S1.3 in the Supplementary Material). Figures 2 and 3 give an
example of the boxplots for ADIST and C-index, respectively, when the training sample size
is 1000, the censoring rate is 10%, and the data are generated following a Weibull distribution
with an interaction survival relationship in the scenario 2TT+4TV (two time-invariant and four
time-varying covariates), with high SNR and strong autocorrelation, and with a total number of
time points of 7 = 4. In general, for a given ¢ (i.e., for a given plot), the performance of the
methods usually worsens as u increases. This is expected because it is more difficult to estimate
the hazard for horizons further away.

From the boxplots based on ADIST evaluation, the parametric SuperppDTPO method works
well as expected when the underlying survival relationship is linear. In most other cases, it is
outperformed by the nonparametric forest methods. Superpp always gives better performance for
dynamic estimation than Superpp0O, which is again expected as the latter uses only the baseline
covariate values. In general, the three forest methods that use all the covariate information,
namely Separate, Poolt and Superpp, perform the best compared to the other two simpler
methods, presumably because the hazard estimates from the three forests are less biased in
general due to the flexibility of the estimators.

Note that the boxplot results for evaluation from ADIST and those from C-index do not
always agree with each other. In particular, the C-index tends to favour SuperppDTPO in general.
For example, Figure 3 shows that SuperppDTPO outperforms Separate when (7, u) = (1,4) and
dominates the other methods when (¢, u) = (2,4), while in Figure 2 it gives the worst performance
among all methods in both cases. As noted, ADIST is a calibration metric, whereas C-index is
a rank-based metric. Bias is more important for accurate estimation of hazards, while variance
is more important for accurate ordering of hazards. This results in favourable performance for
forests using the time-varying information for the ADIST criterion, and sometimes a favourable
performance for the parametric and the simpler forest that uses only the baseline information for
the C-index criterion.

We now focus on the three forest methods, i.e., Separate, Poolt and Superpp. Summary
tables that provide the ranking of these three methods for performance comparison using
ADIST, ALOR and C-index for each factor separately are given in Section S1.3 in the Sup-
plementary Material. In each situation, the Poolt method always ranks between Separate and
Superpp, so we focus on the comparison between Separate and Superpp. Specifically, the
comparison is carried out under two situations separately, i.e., when the estimation horizon
(u—1) is equal to 1 and when it is larger than 1. We give T =4 as an example. In each
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FIGURE 2: Simulation results comparing the distribution of ADIST on test sets across methods
for each pair of (¢, u), trained on sample data of size 1000, with 10% censoring rate, generated
following a Weibull distribution with an interaction survival relationship in the scenario
2TI+4TV, with high SNR and strong autocorrelation. The total number of time points is 7 = 4.

situation, using factorial designs, we study the difference of a given measure between Sep-
arate and Superpp under the effects of the following factors: autocorrelation, censoring rate,
survival distribution, survival relationship, training sample size, scenario and SNR. The effects
are estimated on the basis of an analysis of variance model fit with these factors as main
effects.

Figures 4 and 5 provide the main effect plots for the difference between Separate and Superpp
under all three measurements for (u — t) = 1 and (« — ¢) > 1, respectively. In both cases, for each
given effect, the general pattern of the change in difference resulting from varying the level of
the effect is the same for ADIST and ALOR, and opposite for the C-index. Recall that low values
of ADIST and ALOR and high values of C-index reflect better comparative performance of
Separate over Superpp. Superpp is always the best performer for (u — #) > 1, although the effects
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FiGUure 3: Simulation results comparing the distribution of C-index on test sets across meth-

ods for each pair of (f,u), trained on sample data of size 1000, with 10% censoring rate,

generated following a Weibull distribution with an interaction survival relationship in the sce-

nario 2TT+4TV, with high SNR and strong autocorrelation. The total number of time points
isT =4.

are weaker than for (1 — r) = 1, reflecting the difficulties of predicting farther in the future. We
therefore focus on the estimation horizon (# — ¢) = 1 in the following discussion.

We first examine the results based on ADIST. The overall centre of location is positive,
highlighting that Superpp performs generally better than Separate. However, Separate can
improve relative to Superpp with changes in factors. The larger the training sample size, the
higher the SNR, or the smaller the censoring rate, the stronger the ability of any method to
estimate the underlying survival relationship. In that situation, the flexibility of the Separate
method is advantageous, while the stability of pooling is advantageous when the underlying
relationship is more difficult to estimate. It is clear that the difference between the number of
time-invariant (TI) and the number of time-varying (TV) covariates is driving the scenario effect.
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method for the estimation horizon (u —t) =1, that is, one-step-ahead estimation, when
T =4. Given any measurement m, the difference is computed as mgeparae = Msyperpp- The
solid line gives the zero value and the dashed line gives the mean value over all effects for
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FIGURE 5: Main effect plot of difference for each measurement between Separate and Superpp
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when 7' = 4. Given any measurement m, the difference is computed as mgeparae — Msuperpp- 1HE

solid line gives the zero value and the dashed line gives the mean value over all effects for
reference.
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When #T1 — #TV = 1, Superpp is the big winner; when #TI — #TV = -2, Superpp still wins,
but by a smaller margin; when #TI — #TV = -3, Separate wins; and when #T1 — #TV = —4,
Separate wins by the largest margin. Presumably, this reflects that the Separate method is more
sensitive to local time-varying effects, while pooling benefits from the stability associated with
time-invariant covariates.

Separate performs better relative to Supperpp when using ALOR as the measure of accuracy
(sometimes beating it), reflecting that it can estimate extreme hazards more effectively. This
is caused by the pooling underlying Superpp shrinking the estimated hazards away from the
extremes; see the corresponding plot and discussion in Section S1.4 of the Supplementary
Material.

The relative performance of Separate and Superpp using C-index is similar to that using
ADIST, with Superpp being most effective. This may be explained by the fact that pooling
reduces the variance and thus makes Superpp superior when we evaluate the performance with
C-index.

Overall, weaker autocorrelation in covariates, higher censoring rate, smaller training sample
size, smaller portion of covariates being time-varying, lower SNR and estimation further in the
future, all reflect more difficult estimation tasks, and the less flexible but more stable pooling
approach dominates. Conversely, in the opposite situations where signals are stronger and noise
is less extreme, the more flexible but more variable Separate approach is more effective.

4. CONCLUDING REMARKS

This article investigated different discrete-time survival forest methods for dynamic estimation
with time-varying covariates. All methods investigated can be easily implemented using existing
R packages. The results show that all methods perform well and none dominates the others. As a
general rule, situations that are more difficult from an estimation point of view (such as weaker
signals and less data) favour a global fit, pooling over all time points and taking advantage
of reduced variance, while situations that are easier from an estimation point of view (such as
stronger signals and more data) favour local fits, taking advantage of increased flexibility.

It should be noted that all the methods discussed here assume that censoring is uninformative;
that is, subjects are censored for reasons unrelated to the time to event being examined. This is
potentially an issue in the bankruptcy data examined in Section S2 in the Supplementary Material,
as it is possible that companies that are in danger of declaring bankruptcy stop filing financial
disclosures in order to hide their precarious financial position. A common parametric approach to
this problem is the use of joint modelling, in which the assumed parametric forms for longitudinal
predictors and the time to event are linked through shared random effects (Rizopoulos, 2012).
It is possible that such models could be generalized to the discrete survival situation to allow
tree-based structures on the joint distribution, perhaps based on recently developed tree-based
methods for longitudinal data such as those described in Hajjem, Bellavance & Larocque (2011,
2014), Sela & Simonoff (2012) and Fu & Simonoff (2015).

In this article, we have limited ourselves to an event that is incomplete due only to
right-censoring. Other reasons that the actual time to event is hidden are possible, such as
left-truncation and interval censoring. Generalization of the methods discussed here would
be useful future work, perhaps based on the tree- and forest-based methods for continuous
time-to-event data discussed in Fu & Simonoff (2017a, 2017b) and Yao, Frydman & Simonoff
(2021).

Presumably, all information of the time-varying covariates is available up to the given time
for the estimation of the hazard function at a future time point. In this article, we implemented the
forest methods based only on the current (latest) values of the time-varying covariates without
including any lagged values. Future work can be done to investigate how to use the available
lags efficiently, including the associated variable selection problems.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs. 11639



2021 DYNAMIC ESTIMATION WITH RANDOM FORESTS 15

ACKNOWLEDGEMENTS

We would like to thank the associate editor and three anonymous reviewers for their interesting
and constructive comments that led to an improved version of this article. Denis Larocque
acknowledges the financial support of The Natural Sciences and Engineering Research Council
of Canada (NSERC) and Fondation HEC Montréal.

DATA AVAILABILITY STATEMENT

The datasets generated and analyzed in the simulation study are available from the github
repository, https://github.com/ElainaYao/DynamicEstimationDTSD, including R scripts for
reproducibility of the simulations, and the Supplementary Material mentioned in the text.

REFERENCES

Anderson, J. R., Cain, K. C., & Gelber, R. D. (1983). Analysis of survival by tumor response. Journal of
Clinical Oncology, 1, 710-719.

Bacchetti, P. & Segal, M. R. (1995). Survival trees with time-dependent covariates: Application to
estimating changes in the incubation period of AIDS. Lifetime Data Analysis, 1, 35-47.

Berger, M., Welchowski, T., Schmitz-Valckenberg, S., & Schmid, M. (2019). A classification tree approach
for the modeling of competing risks in discrete time. Advances in Data Analysis and Classification, 13,
965-990.

Bertolet, M., Brooks, M. M., & Bittner, V. (2016). Tree-based identification of subgroups for time-varying
covariate survival data. Statistical Methods in Medical Research, 25, 488-501.

Bou-Hamad, 1., Larocque, D., Ben-Ameur, H., Masse, L. C., Vitaro, F., & Tremblay, R. E. (2009).
Discrete-time survival trees. Canadian Journal of Statistics, 37, 17-32.

Bou-Hamad, I., Larocque, D., & Ben-Ameur, H. (2011a). Discrete-time survival trees and forests with
time-varying covariates application to bankruptcy data. Statistical Modelling, 11, 429-446.

Bou-Hamad, L., Larocque, D., & Ben-Ameur, H. (2011b). A review of survival trees. Statistics Surveys, 5,
44-71.

Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C.J. (1984). Classification and Regression Trees.
Wadsworth and Brooks, Monterey, CA.

Cieslak, D. A., Hoens, T. R., Chawla N., & Kegelmeyer, W. P. (2012). Hellinger distance decision trees
are robust and skew-insensitive. Data Mining and Knowledge Discovery, 24, 136-158.

Elgmati, E., Fiaccone, R. L., Henderson, R., & Matthews, J. N. S. (2015). Penalised logistic regression and
dynamic prediction for discrete-time recurrent event data. Lifetime Data Analysis, 21, 542-560.

Fu, W. & Simonoff, J. S. (2015). Unbiased regression trees for longitudinal and clustered data. Computa-
tional Statistics and Data Analysis, 88, 53-74.

Fu, W. & Simonoff, J. S. (2017a). Survival trees for interval-censored survival data. Statistics in Medicine,
36, 4831-4842.

Fu, W. & Simonoff, J. S. (2017b). Survival trees for left-truncated and right-censored data, with application
to time-varying covariate data. Biostatistics, 18, 352-369.

Gordon, L. & Olshen, R. A. (1985). Tree-structured survival analysis. Cancer Treatment Reports, 69,
1065-1069.

Hajjem, A., Bellavance, F., & Larocque, D. (2011). Mixed effects regression trees for clustered data.
Statistics and Probability Letters, 81, 451-459.

Hajjem, A., Bellavance, F., & Larocque, D. (2014). Mixed-effects random forest for clustered data. Journal
of Statistical Computation and Simulation, 83, 1313-1328.

Henderson, R., Diggle, P., & Dobson, A. (2000). Joint modelling of longitudinal measurements and event
time data. Biostatistics, 1, 465-480.

Hosmer, D. W., Lemeshow, S., & May, S. (2011). Applied Survival Analysis: Regression Modeling of Time
to Event Data. Wiley, New York.

Hothorn, T., Biithlmann, P., Dudoit, S., Molinaro, A., & Van Der Laan, M. J. (2006). Survival ensembles.
Biostatistics, 7, 355-373.

DOI: 10.1002/cjs. 11639 The Canadian Journal of Statistics / La revue canadienne de statistique


https://github.com/ElainaYao/DynamicEstimationDTSD

16 MORADIAN ET AL. Vol. 00, No. 00

Ishwaran, H., Blackstone, E. H., Pothier, C., & Lauer, M. S. (2004). Relative risk forests for exercise heart
rate recovery as a predictor of mortality. Journal of the American Statistical Association, 99, 591-600.

Ishwaran, H., Kogalur, U. B., Blackstone, E. H., & Lauer, M. S. (2008). Random survival forests. The
Annals of Applied Statistics, 2, 841-860.

Klein, J. P. & Moeschberger, M. L. (2003). Survival analysis: Techniques for censored and truncated data.
Statistics for Biology and Health, Springer, New York.

Kleinbaum, D. G. & Klein, M. (2005). Survival analysis: A self-learning text. Statistics for Biology and
Health, Springer, New York.

Leblanc, M. & Crowley, J. (1993). Survival trees by goodness of split. Journal of the American Statistical
Association, 88, 457-467.

Madsen, E. B., Hougaard, P., & Gilpin, E. (1983). Dynamic evaluation of prognosis from time-dependent
variables in acute myocardial infarction. The American Journal of Cardiology, 51, 1579—-1583.

R Core Team. (2020). R: R Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria.

Rizopoulos, D. (2012). Joint models for longitudinal and time-to-event data: With applications in R.
Chapman and Hall/CRC Biostatistics Series, CRC Press, Boca Raton, CA.

Schmid, M., Kchenhoff, H., Hoerauf, A., & Tutz, G. (2016). A survival tree method for the analysis of
discrete event times in clinical and epidemiological studies. Statistics in Medicine, 35, 734-751.

Schmid, M., Welchowski, T., Wright, M. N., & Berger, M. (2020). Discrete-time survival forests with
Hellinger distance decision trees. Data Mining and Knowledge Discovery, 34, 812-832.

Segal, M. R. (1988). Regression trees for censored data. Biometrics, 44, 35-47.

Sela, R. J. & Simonoff, J. S. (2012). RE-EM trees: A data mining approach for longitudinal and clustered
data. Machine Learning, 86, 169-207.

Tutz, G. & Schmid, M. (2016). Modeling discrete time-to-event data. Springer Series in Statistics, Springer,
Switzerland.

van Houwelingen, H. (2007). Dynamic prediction by landmarking in event history analysis. Scandinavian
Journal of Statistics, 34, 70-85.

van Houwelingen, H. & Putter, H. (2011). Dynamic Prediction in Clinical Survival Analysis. CRC Press,
Boca Raton, CA.

Wang, P., Li, Y., & Reddy, C. K. (2019). Machine learning for survival analysis: A survey. ACM Computing
Surveys, 51. Article 110.

Willett, J. B. & Singer, J. D. (1993). Investigating onset, cessation, relapse, and recovery: Why you
should, and how you can, use discrete-time survival analysis to examine event occurrence. Journal of
Consulting and Clinical Psychology, 61, 952-965.

Wongvibulsin, S., Wu, K. C., & Zeger, S. L. (2020). Clinical risk prediction with random forests for survival,
longitudinal, and multivariate (RF-SLAM) data analysis. BMC Medical Research Methodology, 20, 1.

Wright, M. N., Wager, S., & Probst, P. (2020). Ranger: A Fast Implementation of Random Forests.
R package version 0.12.1.

Yao, W., Frydman, H., Larocque, D., & Simonoff, J. S. (2020). Ensemble Methods for Survival Data with
Time-Varying Covariates. arXiv preprint, arXiv:2006.00567.

Yao, W., Frydman, H., & Simonoff, J. S. (2021). An ensemble method for interval-censored time-to-event
data. Biostatistics, 22, 198-213.

Zhu, R. & Kosorok, M. R. (2012). Recursively imputed survival trees. Journal of the American Statistical
Association, 107, 331-340.

Received 28 July 2018
Accepted 22 February 2021

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs. 11639



